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Abstract 
To operate autonomously in complex environments, an agent must monitor its environment and determine how to respond 

to new situations. To be considered intelligent, an agent should select actions in pursuit of its goals, and adapt accordingly 

when its goals need revision. However, most agents assume that their goals are given to them; they cannot recognize when 

their goals should change. Thus, they have difficulty coping with the complex environments of strategy simulations that are 

continuous, partially observable, dynamic, and open with respect to new objects. To increase intelligent agent autonomy, 

we are investigating a conceptual model for goal reasoning called Goal-Driven Autonomy (GDA), which allows agents to 

generate and reason about their goals in response to environment changes. Our hypothesis is that GDA enables an agent to 

respond more effectively to unexpected events in complex environments. We instantiate the GDA model in ARTUE 

(Autonomous Response to Unexpected Events), a domain-independent autonomous agent. We evaluate ARTUE on 

scenarios from two complex strategy simulations, and report on its comparative benefits and limitations. By employing goal 

reasoning, ARTUE outperforms an off-line planner and a discrepancy-based replanner on scenarios requiring reasoning 

about unobserved objects and facts and on scenarios presenting opportunities outside the scope of its current mission. 
 
Keywords: Goal-Driven Autonomy, Autonomous Agents, On-line Planning, Goal Reasoning 

1.  Introduction 

Modern video games and training simulations are complex environments: they are continuous, partially observable, 

dynamic, and open with respect to the introduction of new objects. To operate autonomously in these environments, 

intelligent agents must continuously perform situation assessment, recognize when and how to select appropriate 

goals, create plans to satisfy these goals, and execute them. Indeed, goal-driven action selection is a hallmark of 

intelligent behavior (Newell and Simon 1972). During execution, an agent may encounter opportunities and 

obstacles that lie outside the scope of the agent’s currently active goals (i.e., the goals it is currently trying to 

satisfy), but which nevertheless require response, either because they have higher priority or benefit the agent’s 

long-term welfare. Because these new goals are outside the scope of the active goals, subgoaling (Laird et al. 1986) 

is insufficient to generate them. Traditionally, this process has been left to human users, as in on-line planning (Nau 

2007). In this paper, we extend on-line planning to allow an agent to introduce, manage, and pre-empt goals when 

necessary. We define a conceptual model of this goal reasoning process called Goal-Driven Autonomy (GDA). Our 

claim is that GDA-enabled agents will outperform non-GDA approaches when unanticipated situations occur in 

scenarios from complex environments. 

 

To illustrate the importance of goal reasoning, consider a reconnaissance unit with the goal of returning to its base. 

An applicable plan would include actions for it to move to the base’s location. Suppose an enemy force attacks 

during this plan’s execution. An agent that reasons about its goals can preempt its original goal, in favor of a new 

goal to reinforce the defenses and repel the assault. This is outside the scope of returning the reconnaissance unit to 

the base, but results in a superior outcome (i.e., the base’s defenses remain intact). 

 

To investigate goal reasoning, we implemented the GDA model in ARTUE (Autonomous Response to Unexpected 

Events; Molineaux et al. 2010a), an agent which integrates: a novel Hierarchical Task Network (Erol et al. 1994) 

planner that reasons about exogenous events and continuous environments, an explanation generator that reasons 

about unobserved information in the environment, and goal formulation and management components that use 

structured pieces of domain knowledge called principles to reason about the agent’s goals when new information 

about the environment becomes available. GDA enables ARTUE to competently respond to potential problems and 
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opportunities in complex environments by changing its goals. Unlike most agents, it explicitly reasons about 

unobserved facts and unknown objects, the passage of time using process models, continuous and discrete state 

descriptions, and exogenous events. 

 

We evaluate GDA’s contributions to ARTUE on scenarios defined using two complex environments: Battle of 

Survival (BoS), an open source real-time strategy game built on the Stratagus engine (Ponsen et al. 2005), and the 

Navy training simulation TAO Sandbox (Auslander et al. 2009). Through an ablation study, we demonstrate GDA’s 

significant performance gains versus off-line planning and replanning agents. These gains are largest for scenarios 

requiring reasoning about unknown objects and unobservable aspects of the environment. This work extends our 

previous research (Molineaux et al. 2010a) by reporting an investigation with an additional domain, providing 

additional detail on the GDA implementation and its evaluation in ARTUE, and placing ARTUE and goal reasoning 

in a broader research context. 

 

We define GDA, introduce the simulation environments, and describe the planning and reasoning representations 

employed by ARTUE. We then provide an illustrative example and report on our evaluation. We close with a 

discussion of related work and future directions. 

2.  Goal-Driven Autonomy  

Cox’s (2007) INTRO system provides inspiration for several concepts in Goal-Driven Autonomy, with its focus on 

integrated planning, execution, and goal reasoning. We extend these ideas and integrate them with Nau’s (2007) on-

line planning framework (Figure 1). Also shown in Figure 1 is our GDA conceptual model of goal reasoning. The 

GDA model primarily expands and details the scope of the Controller, which interacts with a Planner and a State 

Transition System Σ (an execution environment). We briefly describe this model and its component tasks. 

 

Following Nau’s (2007) notation, the environment is a tuple (S,A,E,γ) with sets of states S, actions A, and exogenous 

events E, as well as a state transition function γ: S(AE)2
S
, which describes how an action’s execution and/or an 

event’s occurrence transforms the environment from one state to another (Ghallab et al. 2004). In this context, 

partial observability means that, in addition to having only partial knowledge of the current state, the agent is told 

neither the set of all possible states nor given the definition of γ. Therefore, the agent must reason with MΣ, a 

(possibly incorrect and incomplete) model of the environment. 

 

In both models, the Planner receives as input a planning problem (MΣ,sc,gc), where sc is the current observed state, 

and gc is a goal that can be satisfied by some set of states SgS. The Planner outputs a plan pc, which is a sequence 

of actions Ac=[ac,…,ac+n] that result in satisfying gc. Unlike the on-line planning model, the GDA model’s Planner 

Figure 1: Conceptual models of on-line planning (left) (Nau, 2007) and Goal-Driven Autonomy (right) 
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generates a corresponding sequence of expectations Xc=[xc,…xc+n], where each xiXc is a set of state constraints 

corresponding to the sequence of states [sc+1,…,sc+n+1] expected to occur when executing Ac in sc using MΣ. 

 

In both models, the Controller sends the actions in the plan to the environment and processes the resulting 

observations. The on-line planning model’s Controller monitors the observations to determine whether it should 

submit the next action of pc or replan for the initial goal g0. The GDA Controller likewise has these options, but it 

also compares its observations with Xc to determine whether a change in goals may be warranted. In particular, it 

performs the following four knowledge-intensive tasks, which together comprise goal reasoning in the GDA model: 

1. Discrepancy detection: This compares the observations obtained from executing action ac in state sc with the 

expectation xc (i.e., it tests whether any constraints are violated, corresponding to unexpected observations). If 

the set of discrepancies D found in this comparison is non-empty, then they are explained in the following task.   

2. Explanation generation: Given the current observed state sc, prior observed state sp, and a set of discrepancies D, 

this process hypothesizes one or more explanations E of their cause.  

3. Goal formulation: This generates zero or more goals G in response to the set of discrepancies D, explanations E, 

and the current observed state sc.
1
 

4. Goal management: Given a set of pending goals Gpend (some of which may be active) and new goals G, this may 

update Gpend (e.g., by adding G and/or deleting/modifying other pending goals) and will select the next goals G′ 

to be given to the Planner. (It is possible that G=G.) 

GDA makes no commitment to specific types of algorithms for the highlighted tasks and treats the Planner as a 

black box. For example, goal formulation and management may involve comprehensive goal transformations (Cox 

and Veloso 1998) instead of ARTUE’s use of principles. In addition, GDA agents may employ task goals, as in 

ARTUE, or state goals depending on the planning algorithm being used.  

3.  Strategy Simulations and the PDDL+ Planning Formalism 

Before describing our implementation of GDA in the ARTUE agent, we describe the task environments and 

corresponding planning domain representations. 

3.1. Strategy Simulations as Complex Environments 

We employ two strategy simulations as environments to demonstrate ARTUE: Battle of Survival 1.0 (BoS) and the 

TAO Sandbox. BoS
2
 is an open source real-time strategy game implemented using the Stratagus game engine 

(Ponsen et al. 2005). The TAO Sandbox is a strategy simulator used by the Navy to train Tactical Action Officers in 

anti-submarine warfare and other types of missions (Auslander et al. 2009). In each of these strategy simulations, 

players accomplish their goals by giving orders to units ‒ entities in the environment capable of carrying out tasks. 

The effects of orders may be instantaneous (e.g., launch a helicopter), of fixed duration (e.g., move to a specific 

location), or of indefinite duration (e.g., gather resources from the environment). Therefore, players interacting with 

the simulation must reason about instantaneous occurrences (i.e., the orders themselves) and continuous effects (i.e., 

the units carrying out the orders). During the simulation, potential opportunities and failures can arise requiring the 

player’s response and possibly changes to the player’s goals. Figure 2 displays brief descriptions of the units from 

these two simulations. 

 

Battle of Survival  TAO Sandbox 

                                                 
1More generally, this is a discrepancy resolution step; a GDA agent could decide to ignore the discrepancy, dismiss the 

explanation, query for additional information before making a decision on whether to generate a goal, etc. However, in this paper 

we simplify this model to better align it with our instantiation of GDA in ARTUE.  
2 http://www.boswars.org/ 
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 Harvester – Non-combat unit used to gather 

resources from the environment 

 Tank – Mobile unit used for combat 

 Scout – Fast ground unit used for reconnaissance 

 Helicopter – Aerial unit used for transportation 

and combat 

 Gun Turret – Immobile unit used for defense 

 Navy Ship – Anti-submarine maritime surface unit that 

can launch torpedoes and helicopters; it can use a 

variety of sensors 

 Submarine (sub) – Underwater combat unit that can lay 

mines and launch torpedoes to destroy surface ships 

 Helicopter – Aerial unit that can detect submarines (by 

launching buoys) and launch torpedoes 

 Transport – Surface units used to move people and cargo 

Figure 2: TAO Sandbox and BoS unit types and descriptions 

In Section 1, we explained that a complex environment is one that is continuous, partially observable, dynamic, and 

open with respect to new objects. BoS and the TAO Sandbox are complex environments. Unit positions, health, and 

resources are important fluents (i.e., continuously varying numeric quantities). These simulations are partially 

observable because the players do not have access to the complete state when selecting actions. Therefore, from the 

agent’s perspective, these environments are nondeterministic. Furthermore, the environment changes not only as a 

result of the player’s actions, but also as a result of dynamic processes and events, such as enemy attacks and 

changing weather conditions. Finally, these environments are open with respect to the introduction of new objects. 

In BoS, new units (neutral and enemy) may be discovered as terrain is explored, and in the TAO Sandbox, new 

submarines, torpedoes, and mines may all be discovered during execution. 

3.2. PDDL+ Planning Formalism 

To model these complex environments, we use the PDDL+ domain language, which was designed to support 

reasoning about mixed discrete-continuous domains (Fox and Long 2006). In PDDL+, states are divided into two 

components: a discrete state described logically, and a continuous state consisting of fluents and their numeric 

values. In addition to actions, which (as in classical planning) describe instantaneous changes to the discrete state 

and are initiated by the agent, PDDL+ describes continuous and dynamic changes to the state from the environment 

using processes and events. These allow us to model the interaction between the agent’s behavior and the 

environment. Processes occur over time and have continuous effects on fluent values. They are initiated or 

terminated by discrete state changes, which are modeled as effects of actions and events. Figure 3 illustrates how 

moving a ship in the TAO Sandbox environment can be modeled using PDDL+. 

 

 
Action Name MoveShip 

Participants ?unit type=NavalShip, ?x type=Number, ?y type=Number 

Conditions (not (movingTo ?unit ?x ?y)) 

Effects (Discrete Only) (movingTo ?unit ?x ?y)  

 

Process Name ShipMovement 

Participants ?ship type = NavalShip 

Conditions - (Discrete Only) (movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 

Effects - (Continuous Only) (increase (atX ?ship)  
   (* (cos (headingOf ?ship)) ?speed #t))  
(increase (atY ?ship)  
   (* (sin (headingOf ?ship))?speed #t))  

 
 

Event Name EndOfShipMovement 

Participants ?ship type = NavalShip 

Conditions - 

(Discrete and Continuous) 

(movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 
(<=(dist(atX ?ship)(atY ?ship)?x ?y)0.5) 

Effects - (Discrete) ¬(movingTo ?ship ?x ?y)                            
¬(speedOf ?ship ?speed) 
(speedOf ?ship 0) 

Figure 3: PDDL+ action, process, and event describing the movement of a naval ship. 
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While actions are controlled by the agent and may be taken when a set of objects satisfies the participant types and 

conditions, processes and events exist in the environment as follows. A process is active for each set of objects that 

satisfy its participant types and conditions, modeling continuous changes in the environment. An event occurs when 

a set of objects satisfy its participant types and conditions, resulting in changes to the discrete state. For example, 

when an agent initiates the MoveShip action, with assignments for its participants, a movingTo literal is added to the 

state, creating a ShipMovement process that models the participant ship’s change in position over time. The 

ShipMovement process definition’s conditions include the ship’s destination and speed. The ShipMovement process’s 

continuous effects define functions describing the ship’s location with respect to time. In this case, when the ship 

reaches its destination, its new position will satisfy the conditions of an EndOfShipMovement event, causing that 

event to occur. The result of this event is that the ship’s ShipMovement process is no longer active (i.e., the ship has 

stopped). 

3.3. Domain Extensions to Support GDA 

To support discrepancy detection and explanation generation from the environment model, we extended PDDL+ 

with three properties for domain predicates: observable, hidden, and ignorable. To account for partial observability, 

we consider each predicate to be either observable or hidden. A literal with an observable predicate is always 

observed when true, and a literal with a hidden predicate is never observed regardless of its truth-value. Thus, the 

truth of a hidden fact can never be established by direct observation. For example, the hidden predicate 

enemyProducingRegion describes an unexplored region that may introduce enemy units in the BoS environment 

model. Ignorable predicates describe aspects of the observable state that the agent may safely ignore during 

execution. For example, the BoS environment model uses the ignorable predicate regionBoundary to relate a region 

to a sequence of coordinates describing the region’s boundary. While necessary for planning, the exact coordinates 

and their order may be ignored during execution. In the next section, we describe how ARTUE uses this domain 

representation to perform GDA tasks in the BoS and TAO Sandbox environments. 

4. Goal-Driven Autonomy in ARTUE 

To highlight ARTUE’s novel features and its implementation of GDA components, we use the Escort scenario from 

BoS as a running example throughout this section. The agent’s initial goal in this scenario is to return a harvester 

unit to its base, which is distant from the harvester’s initial location. The map is divided into five regions. A corridor 

lies between the harvester and base; it is surrounded by impassible terrain except for two bottleneck regions on 

either side. Each bottleneck is defended by two friendly units: an immobile gun turret and a tank.  The bottlenecks 

and corridor regions are visible to the agent (i.e., any enemy units in these regions will be observed by the agent). 

Adjacent to each bottleneck is an unseen region, from which enemy units may attack.  The agent must navigate the 

harvester safely to its base by generating, executing, and monitoring plans for the user-defined navigation goal and 

any generated goals. Figure 4 shows a screenshot of a tank and a gun turret defending a bottleneck and a small 

subset of the initial state for this scenario. Region4 is one bottleneck region, Region5 is an unseen by the agent, and 

the corridor that the harvester must traverse is to the left of Region4. The discrete state defines the regions, their 

adjacencies, units, and their locations. The continuous state describes the health of the units and the agent’s 

resources. 

 

Discrete State: 
(isa Base27 Base) 
(isa Region4 BottleneckRegion) 

(isa Region5 UnseenRegion) 
(regionBorders Region4 Region5) 
(isa Harvester17 Harvester) 
(unitAt Harvester17 114 122) 
(isa GunTurret19 GunTurret) 
(inRegion GunTurret19 Region4) 
… 

Continuous State: 
((unitHealth Tank20) 200) 
((playerResources Player0 Titanium) 0) 

… 

Goal: 
(moveUnitToUnit Harvester17 Base27) 

Figure 4: Escort scenario with screenshot of units defending a bottleneck adjacent to unknown region. 

 

Region5 

Region4 
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4.1. Hierarchical Task Network Planning with Processes and Events 

In GDA, given a goal, the Planner generates plans, which are sequences of actions, and expectations about how the 

environment will change during plan execution. For ARTUE, we extended SHOP2, a popular Hierarchical Task 

Network (HTN) planner (Nau et al. 2003), to reason about PDDL+ domains. Our extensions include the addition of 

a wait action, which allows the Planner to reason about time within the SHOP2 framework, and a state projection 

algorithm, which determines the continuous effects of active processes and the timing of exogenous events. These 

extensions are described in detail in (Molineaux et al. 2010b) and summarized here. 

 

HTN planning (Erol et al. 1994) formulates plans by decomposing tasks into subtasks, bottoming out into a 

sequence of actions. Therefore, for an HTN Planner, the goals generated and selected by ARTUE are tasks. SHOP2 

is a state space planner; at each step in its search, applicable task decompositions are considered to extend an 

existing plan, and, for each selected action, a new state is extrapolated. To process the passage of time within tasks, 

we introduce a special wait action, which takes one argument, wait-time, representing the action’s duration.
3
 It is 

always applicable, and because time passes during this action, it is necessary to compute the effects of the active 

processes and events that occur using the state projection algorithm. All other actions are instantaneous and added 

sequentially with any number of actions occurring between wait actions. Because the actions in these domains are 

orders to units, during the wait action, the units carry out their orders concurrently. In this manner, our planner can 

predict the state at any future time point. To use the wait action effectively, we use HTN methods to determine the 

appropriate durations as illustrated in the example in Figure 5. 

 

Given the initial goal (moveUnitToUnit Harvester17 Base27), the HTN method in Figure 5 reduces this task into 

two actions: (MoveTo Harvester17 2 2) and (Wait 3500). The method’s preconditions specify the two units’ 

locations and the speed of the moving unit, and also compute how long the movement will take. In this case, one 

effect of the MoveTo action is that the fact (movingTo Harvester17 2 2) is added to the state activating a movement 

process. After 3500 time units, the harvester is predicted to arrive at its destination, satisfying the initial goal. 

4.2. Discrepancy detection 

Discrepancy detection is the GDA task responsible for identifying prediction failures that may indicate problems or 

opportunities. ARTUE monitors the observed state at fixed intervals throughout execution and after each wait action 

completes. Discrepancies are found by comparing the observed state to the expected state, which was generated by 

the extended SHOP2 system given the environment model and the observed state when the plan was requested. 

 

Before comparing the observed and expected states, the facts and fluents containing ignorable predicates are 

removed from consideration. For the discrete state, any fact that appears in one state but not the other is considered a 

discrepancy. For the continuous state, if a fluent is defined in one of the states and not the other, or if there is more 

than 1% difference between its expected and observed value, then it is considered a discrepancy. While this error 

tolerance will vary by the fidelity of environment model, a 1% difference was sufficient in each of these domains. 

 

Returning to our example, an enemy Scout unit is observed in Region5 at time step 300. None of the discrete or 

continuous facts describing the enemy Scout unit were in the expected state that was projecting the effects of the 

                                                 
3
This could be extended to include an arbitrary condition. In that case, the duration would last until the condition was satisfied in 

the environment. 

(:method (moveUnitToUnit ?unit ?destination-unit) 
  :name MoveUnitBasic 
  :preconditions ((unitAt ?unit ?x1 ?y1) 
        (unitAt ?destination-unit ?to-x ?to-y)   
            (speedOfUnit ?unit ?speed) 
                  (assign ?dur  
                       (durationOfMovement ?speed ?x ?y ?to-x ?to-y))) 
  :subtasks ((MoveTo ?unit ?to-x ?to-y) 
             (Wait ?dur))) 
 

Figure 5: An HTN method for decomposing the task moveUnitToUnit into a sequence of two 

actions: a move order and a wait action for the estimated duration of the movement. 
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moving process on the harvester’s position. Therefore, these facts are considered a discrepancy and provided to the 

explanation generation component. 

4.3. Explanation Generation 

Discrepancies between a projected state and an observed state arise as a result of one of three circumstances:  

1.  A hidden factor influences the state.  

2.  The agent’s domain knowledge is flawed, resulting in false expectations. 

3.  The perception of the actual state is incorrect. 

While a complete model would address each type of discrepancy, we focus here on hidden factors influencing the 

state and discuss possible approaches for explaining and responding to flawed domain knowledge and 

misperceptions later in this section. Hidden factors influencing the state may threaten an agent’s performance. 

Therefore, ARTUE generates explanations (i.e., sets of assumptions about the hidden state) of discrepancies to 

identify hidden factors. ARTUE employs an Assumption-based Truth Maintenance System (ATMS; de Kleer 1986) 

to generate these explanations using causal inference over the environment model and the previous, expected, and 

observed states. 

 

Because complex environments are partially observable and open with respect to new objects, ARTUE must reason 

about two types of hidden factors: hidden facts and unknown objects. For each hidden predicate in the environment 

model, ARTUE creates a set of assumptions that include all possible groundings of that predicate with known 

objects. To account for the introduction of new objects, ARTUE will also generate additional assumptions for 

hidden predicates with reified unknown objects using the argument types of the predicate. For example, the 

predicate enemyProducingRegion is a hidden predicate whose one and only argument is of type Region. Therefore, 

if there are five known region objects in the environment, then six enemyProducingRegion assumptions will be 

created, one for each known region and one for an UnknownRegion object. 

 

To determine which of these assumptions explains the discrepancies, ARTUE automatically generates a set of 

ATMS rules from the PDDL+ domain, which incorporates hidden and observable state facts. These rules relate the 

state before an action is executed (or an event occurs) to the resulting state. 

 
Event Name EnemyAppears 

Participants ?unit type = Unit 

Conditions (enemyProducingRegion ?region EnemyPlayer)  // hidden 
(enemyBuiltIn ?unit ?region)                // hidden  
(unseenRegion ?region) 

Effects (inRegion ?unit ?region) 
(unitOwner ?unit EnemyPlayer) 

Figure 6: Event definition describing the appearance of an enemy unit using two hidden facts 

Figure 6 includes a PDDL+ event definition for an appearing enemy unit. ARTUE translates this into the following 

rule: 

(occurs (EnemyAppears ?unit)) ∧ (unseenRegion ?region BeforeEvent)  
         ∧ (enemyProducingRegion ?region BeforeEvent) 
      ∧ (enemyBuiltIn ?unit ?region BeforeEvent) 

    ⇒(inRegion ?unit ?region AfterEvent) ∧ (unitOwner ?unit Enemy AfterEvent) 

 

Using the rules and observed literals, the ATMS can deduce the possible worlds that result from different sets of 

assumptions. Ideally, there is a possible world in which each discrete fact in the actual successor state is true and 

each fluent value in the successor state is within the error tolerance of discrepancy detection. However, no set of 

assumptions may explain certain values or facts in the successor state; this can occur due to flaws in ARTUE’s 

domain knowledge or flawed perceptions. Currently, ARTUE does nothing with these discrepancies and ignores 

them in its search for possible worlds. In the future, explanation failure could lead to the construction of a learning 

goal (Ram and Leake 1995) to refine ARTUE’s knowledge. This could involve altering the error tolerance for 

misperceptions or performing model-based diagnosis to identify errors in action models as in (Roos and Witteveen 

2009).  
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After all unexplainable facts are discarded, ARTUE searches for possible worlds in which all of the remaining facts 

and fluents are explained. Each possible world is one explanation (i.e., a set of assumptions that predicts as many of 

the discrepancies as possible). Assumptions shared across all explanations are added to the ARTUE’s beliefs about 

the current state. 

 

In the case of the enemy Scout’s appearance, the EnemyAppears event includes effects that match the discrepancies 

in the observed state. Explanation generation produces an explanation that includes the hidden facts that would 

cause the event to occur (i.e., assumptions that Region5 is an enemy producing region and that the Scout unit was 

built in it). ARTUE adopts these facts as beliefs, and goal formulation is triggered. 

4.4. Goal Formulation 

After explaining the discrepancy, the agent determines which goals should be generated (if any) and added to the set 

of pending goals. Not all discrepancies require the creation of new goals; in fact many discrepancies may be 

ignored, and some explanations involve irrelevant assumptions that do not require action. 

 

ARTUE performs goal formulation using principles, which are schemas whose components are participants, 

conditions, an intensity level, and a goal form. Each participant is assigned a type (e.g., Region). Conditions are 

statements concerning the participants that must hold in the agent’s beliefs to generate the goal specified by the goal 

form. The intensity level specifies the importance of the generated goal to the agent and is currently a fixed 

qualitative value. In the future, ARTUE will support functions over future states to allow for finer fidelity in 

prioritizing the agent’s goals. For example, the larger the opposing force outside the bottleneck, the higher the 

intensity should be to reinforce it. ARTUE checks its principles to determine which goals are generated (if any). A 

principle will generate a goal for each set of objects in ARTUE’s beliefs that correspond to the principle’s 

participant types and satisfy its conditions. A principle may generate multiple goals in either a single goal 

formulation step or over multiple goal reasoning cycles. We consider the implications of providing the principles to 

this version of ARTUE and extensions that learn this knowledge in the discussion of the evaluation. 

 
Name ReinforceBottleneck 

Participants ?bottleneck type = Bottleneck , ?region type = Region  

Conditions (regionBorders ?bottleneck ?region)∧ 
(enemyProducingRegion ?region ?enemy) 

Intensity Level HighIntensity 

Goal form (reinforceBottleneck ?bottleneck) 

Figure 7: Principle used by ARTUE to reinforce a bottleneck between its forces and the enemies 

In our example, given the observed state with the enemy Scout unit and the explanation that Region5 is an enemy 

producing region, ARTUE uses the principle in Figure 7 to generate the high priority goal of reinforcing the 

bottleneck in Region4.  

4.5. Goal Management 

Given multiple goals, the agent must decide which pending goal to pursue next (i.e., make active). Principles play an 

important role in goal management: pending goals are ordered by their intensity. Currently, ARTUE considers goals 

individually. Thus, it selects a goal with a highest intensity. However, if the Planner cannot generate a plan to 

achieve a selected goal, then ARTUE selects the goal with the next highest intensity, until an achievable goal is 

found. This is a simple method for goal retraction. A more complete account of goal management would include 

goal transformations and other methods for goal retraction (Cox and Veloso 1998).  

 

In our example, two goals are now pending: (reinforceBottleneck Region4) and (moveUnitToUnit 

Harvester17 Base27). The first goal has a higher intensity and given that a plan for can be created by the Planner, 

(reinforceBottleneck Region4) becomes the active goal.  

5.  Evaluation 

In this section, we describe an evaluation assessing ARTUE’s performance in six scenarios drawn from two 

complex environments: Battle of Survival and the TAO Sandbox. While the TAO Sandbox results were originally 
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reported in (Molineaux et al. 2010a), we include additional analysis and discussion here. To evaluate the impact of 

Goal-Driven Autonomy, we compare ARTUE against two baselines: a discrepancy-based replanning agent 

(REPLAN) and an off-line planning agent (PLAN1). In these scenarios, REPLAN should outperform PLAN1 due to 

the environments’ partial observability and openness with respect to new objects. REPLAN employs the same 

discrepancy detection algorithm as ARTUE, but does not perform explanation and goal management. We 

hypothesize that ARTUE will outperform the baseline agents in scenarios where unobserved facts affect the state, 

due to explanation, and where important events occur outside the scope of the mission, due to goal reasoning. We 

measure performance based on achieving the initial goal and a combination of scenario-specific quantitative metrics 

(e.g., execution time). Table 1 organizes the six scenarios with respect to the types of unexpected events, whether 

unobservable facts affect the environment, whether adversaries are present, and the scenario-specific scoring 

metrics. After describing these six scenarios, we describe results from 25 trials on each.  

 

Table 1: Evaluation Scenarios 

Scenario Name 
Unexpected 

Event Types 

Unobservable 

Facts (Hidden)? 
Adversaries? 

Additional Quantitative 

Metrics 

BoS: Resource 

Gathering 
Opportunity   Execution time 

BoS: Escort Problem   
Distance from goal and  

health of other friendlies 

BoS: 

Exploration 
Problem   Area explored 

TAO: 

Identification 
Opportunity   

Identifying and  

destroying enemy sub 

TAO: Iceberg 
Problem + 

Opportunity 
  

Execution time and  

rescue results 

TAO:  

Sub Hunt 
Problem   Clearing discovered mines 

 

5.1. Scenarios: Battle of Survival  

Resource Gathering: The agent is given the goal to retrieve 100 units of titanium. While a harvester is en route to 

known titanium fields, it discovers a closer titanium deposit. Score is calculated using the time required to achieve 

the goal. This unexpected event does not require reasoning about unobserved facts. 

 

Escort: A harvester unit must safely return to base. Its path is a corridor with impassible terrain on either side except 

for two bottlenecks. Each bottleneck is defended by a friendly tank and gun turret. All regions outside the bottleneck 

are unexplored, and therefore any enemy units in these regions are initially unknown to the agent. After a short time, 

an enemy Scout unit appears outside one of the bottlenecks. Later, three enemy tanks attack the same bottleneck. 

Score is calculated based on the survival time of the harvester and the remaining health of friendly units. The 

unexpected event can be explained by unobserved facts. 

 

Exploration: Friendly buildings are clustered in one corner of the map along with a scout unit, and the agent is given 

the goal to explore all of the terrain tiles. During exploration, land-based movement actions fail to achieve their 

intended effects due to impassable terrain in part of the map. Score is calculated based on the resources remaining, 

the time spent exploring the map, and the percentage of the map explored. The Planner is allowed to order agents to 

move to any tile on map. Therefore, the unobservable facts that some areas are inaccessible are needed to explain 

why the land-based explorer cannot reach its destination. 

 

The PDDL+ planning environment model for these scenarios consists of 13 actions, 3 processes, and 6 events. 

ARTUE uses 13 HTN methods to formulate plans in this domain, and 3 principles to generate goals and assign goal 

intensities in these scenarios. 
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5.2. Scenarios: TAO Sandbox 

Identification: The agent is given a goal to identify nearby ships. To do so, it must send a task group unit within 

visual range of each ship. During this exercise, an unseen sub torpedoes a nearby ship, causing it to sink. This sub is 

an unknown object that cannot be directly observed. Score is based on identifying each of the nearby ships as well as 

the sub (which requires special sensors), and also destroying the sub, which is outside the scope of the user-supplied 

goal.  

 

Iceberg: The agent is given a goal to safely guide a transport ship to a destination in Norway. During its travel, a 

storm arises, which is presaged by a lightning strike. The strike causes a large iceberg to calve, blocking the entrance 

to a nearby port. Due to the storm’s severity, all ships must seek shelter, and a nearby ship, which does not detect the 

iceberg, founders on it. Score for this scenario is based on how close the ship comes to its destination, how long it 

survives, and how early it arrives to rescue the passengers of the foundering ship, which is outside the scope of the 

user-supplied goal. The presence of an approaching storm is an unobservable fact that is necessary to explain the 

observations of thunder and lightning. 

 

SubHunt: An enemy sub has been spotted nearby. The agent’s goal is to destroy the sub. However, this sub has been 

laying mines that can incapacitate the searching ship. Points are awarded for finding and destroying the sub, as well 

as sweeping the mines. The existence of the mines cannot be detected safely, but must be inferred from explosions 

on board a nearby ship. 

 

The PDDL+ planning environment model for these scenarios consists for 33 actions, 7 processes, and 37 events. 

ARTUE uses 46 HTN methods to formulate plans in this domain, and 11 principles to generate goals and assign 

goal intensities in these scenarios. 

5.3. Results 

In each scenario, we performed 25 trials by varying the objects’ starting locations and the timing of unexpected 

events, which were held constant across the three agents. Table 2 lists the average scores for each agent on each 

scenario and the percentage of the trials in which they achieved the initial goal. 

Table 2: Agent performance on each scenario (average scenario-specific metric 

and percent of the trials in which the agent achieves the initial goal) 

Scenario ARTUE REPLAN PLAN1 

BoS: Resource Gathering 0.61 (100%) 0.61 (100%) 0.04 (100%) 

BoS: Escort 0.93 (92%) 0.63 (4%)  0.58 (0%) 

BoS: Exploration 0.98 (96%) 0.26 (0%) 0.83 (0%) 

TAO: Identification 0.73 (100%) 0.40 (100%) 0.32 (40%) 

TAO: Iceberg 0.72 (76%)  0.48 (48%) 0.35 (4%) 

TAO: Sub Hunt 0.97 (96%) 0.48 (36%) 0.34 (0%) 

Overall, ARTUE achieved the user-provided goal on 93% of the trials compared to 48% and 24% for REPLAN and 

PLAN1, respectively. ARTUE achieved the user-provided goal at a greater rate than either of the ablations on five 

out of six scenarios, with the three agents performing equally well on the Resource Gathering scenario. All scenario-

specific metric scores are scaled between 0 and 1, with 1 being the maximum performance. While they are not 

comparable between scenarios, the scenario-specific metrics are used here to establish ordinal relationships. Within 

each scenario, the differences between each agent’s performance are statistically significant (p<.05) on all trials 

except between ARTUE and REPLAN on the Resource Gathering scenario. On five of the six scenarios, ARTUE 

outperformed REPLAN, and REPLAN outperformed PLAN1. On the Exploration scenario, PLAN1 achieved a 

higher average scenario-specific score than REPLAN. We discuss these results in more detail in the following 

section. 

5.4. Discussion 

These results demonstrate that ARTUE can competently respond to unexpected events in scenarios defined for these 

complex environments. Furthermore, the comparisons with each ablation support our hypothesis that Goal-Driven 

Autonomy is responsible for ARTUE’s performance gains. Further analysis indicates the differences in performance 
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are due to ARTUE’s reasoning about hidden factors affecting the environment and goal generation. ARTUE 

outperformed REPLAN on all of the scenarios involving reasoning about unobservable facts. In the Resource 

Gathering scenario, ARTUE and REPLAN respond in the same manner to the discovered titanium because the best 

response is to retain the goal of gathering titanium and gather it from the newly discovered field. In the Escort 

scenario, while REPLAN does not respond to the Scout unit, ARTUE changes goals to add another tank to defend 

the bottleneck. When the enemy tanks arrive, REPLAN still has a tank unnecessarily defending the other bottleneck. 

At this point, REPLAN directs this tank to attack the enemy force, but it arrives too late to assist and is also 

destroyed. A surprising result is that PLAN1 outperformed REPLAN on the Exploration scenario. While neither 

agent accomplished the goal of exploring all the terrain, PLAN1 uncovered more terrain. The unexpected event in 

this scenario is that impassable terrain prevented the exploring Scout unit from reaching the first waypoint. While 

PLAN1 continued its plan by ordering the Scout unit to the next waypoint, REPLAN persists in ordering the Scout 

unit to the first waypoint and fails to explore the rest of the map.  

 

The performance differences in the TAO Sandbox scenarios demonstrate the types of scenarios that each agent can 

address. PLAN1 cannot tolerate even minor changes to its expectations. In the Iceberg scenario, PLAN1 

accomplished the initial goal in the rare occasion that the port was near enough to be reached at top speed before the 

storm arrives. REPLAN responds correctly to minor exogenous events (e.g., course changes) that occur during the 

Identification scenario. This requires that the event and its repercussions be immediately apparent. ARTUE 

outperforms REPLAN when exogenous events are caused by unobserved aspects of the environment and in 

situations outside the bounds of the active goals. For example, saving a foundering ship would not be a subgoal for 

every possible goal in the domain, although it is required by the Iceberg scenario. 

 

GDA as instantiated in ARTUE improves agent performance in scenarios that require reasoning about unobservable 

facts and unseen objects. In HTN planning, the extent to which these scenarios require explicit goal formulation in 

addition to reasoning about unknown facts is difficult to ascertain. An alternative approach would involve adding 

levels of abstraction to the task hierarchy, thereby stretching the semantics of HTNs. For example, the first 

decomposition in every plan could involve reasoning about what task to pursue in the current state. This not only 

raises the knowledge engineering burden of intelligent system designers, but also increases the difficulty of learning 

goal reasoning knowledge. Supporting this claim, a later version of this system, T-ARTUE, demonstrates that 

principles can be replaced with an active learning process (Powell et al. 2011). Furthermore, by confining planning 

to action selection, GDA enables future work exploring additional ways for agents to select goals. 

6.  Related Work 

Intelligent action selection is a central aim of research on intelligent agent architectures. These architectures range 

from purely deliberative (Fikes and Nilsson 1971) to purely reactive architectures (Brooks 1991) with many agent 

architectures containing both reactive and deliberative components. Reactive components directly link observed 

states to particular actions. They can be hardcoded and fixed, as in the finite state machines (Gill 1962) and behavior 

trees algorithms used in current video games (Champandard 2007), or learned using methods such as reinforcement 

learning (Sutton and Barto 1998). GDA is a deliberative model. Consequently, our discussion of related work 

focuses on the deliberative components of other approaches. To highlight the differences between GDA, its 

implementation in ARTUE, and other approaches, we begin by discussing other approaches to planning in complex 

environments, and then discuss other approaches for goal reasoning. 

6.1. Related Approaches for Planning in Complex Environments 

As defined in Section 1, complex environments are partially observable, dynamic, continuous, and open with 

respect to new objects. In partially observable environments, the results of actions are often nondeterministic from 

the perspective of the agent. One approach for coping with nondeterministic environments is contingency planning 

(Dearden et al. 2003). Contingency planning agents generate contingency branches that are executed only when an 

action does not achieve its intended effects. Determining the actions that require conditional plans is a difficult 

problem. Furthermore, contingency planning typically requires that the possible outcomes of actions are known 

beforehand, which is not the case in our domains due to unknown objects. An alternative approach is to represent 

uncertainty about the current state directly using Partially Observable Markov Decision Processes (Kaelbling et al. 

1998). Likhachev and Stentz (2007) observe that these approaches require an enumeration of the state space, which 

is impossible in open domains, and cannot incorporate domain-specific heuristic knowledge. To address these 
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concerns, their PCPP planner reasons about preferences between unknown values of the state when generating the 

plan. While ARTUE (currently) generates a single plan without any probabilities, it uses an HTN planner that can 

leverage domain knowledge. Incorporating probability distributions over future expected states can reduce the 

number of false positives during discrepancy detection and is an important direction for future work.  

Plan monitoring can be used to detect changes in dynamic environments that can cause plan failure. For example, 

HoTRiDE replans for portions of its plan when an action fails (Ayan et al. 2007). Another replanner, MRP-Agent, 

continually searches for the plan that can most easily be replanned in the event of plan failure (Corchado et al. 

2008). Instead of generating complete plans that are likely to be invalidated by exogenous events, incremental 

planners (1) plan for a fixed time horizon, (2) execute the plan, and then cycle on these steps. This process continues 

until a goal state is reached. Incremental planning and plan monitoring may be combined. For example, CPEF 

(Myers 1999) incrementally generates plans to achieve air superiority in military combat and replans when 

unexpected events occur (e.g., a plan is shot down). As illustrated in our evaluation, replanning without reasoning 

about the cause of the failure or the goals of the agent is insufficient for the scenarios in our evaluation. 

Complex environments are subject to continuous change. Only a few planning systems can process continuous 

effects. One such system is COLIN, a domain-independent planner that can reason with the linear continuous effects 

of durative actions (Coles et al. 2009). However, COLIN does not consider exogenous changes in the environment. 

Our extensions to the popular SHOP2 planner allow ARTUE to reason about continuous effects present in the 

domain description. 

In open environments, objects unknown at initial planning time may be relevant to the active goals. To account for 

this, several researchers have explored extensions to goal specifications. Goldman (2009) describes a system with 

universally quantified goals that allows planning for sets of entities whose cardinality is unknown at planning time. 

Beyond just specifying goals for unknown entities, open world quantified goals define sensing actions to detect 

unknown objects as well as a utility for achieving each goal (Talamadupula et al.  2009). These approaches place 

goal reasoning within the central planning mechanism. GDA differs by considering goal reasoning as a knowledge 

intensive process worthy of independent investigation. We believe that this reduces the knowledge engineering 

burden for a system’s designer and will enable learning of goal reasoning structures in new domains. 

6.2. Related Approaches for Goal Reasoning 

Goal-Driven Autonomy is a conceptual model of goal reasoning, which was the topic of a recent AAAI 2010 

workshop that brought together researchers from a variety of research perspectives.
4
 For a recent survey of goal 

reasoning approaches, see Hawes (2011). In this section, we distinguish our work from other goal reasoning 

approaches including goal generation structures, extended agent frameworks, mobile robotic applications, and case-

based reasoning. 

The most straightforward approaches for goal reasoning involve postulating a structure to formulate goals given the 

current state. Coddington and Luck (2004) bestowed agents with motivations, which generate goals in response to 

changes in specific state variables. For example, if a rover’s battery charge falls below 50%, then a goal to recharge 

the battery will be generated (Meneguzzi and Luck 2007). ARTUE’s principles differ in two important ways: (1) 

they use explanations to infer unobservable facts of the current state, and (2) they are not constrained to operate on 

individual objects or values. 

Intelligent architectures typically address issues related to goal reasoning. Here, we discuss extensions specifically 

designed for goal reasoning in three agent architectures: Belief-Desire Intention (BDI; Rao and Georgeff 1995), 

SOAR (Laird 2008) and ICARUS (Langley and Choi 2006). While BDI agents typically change their procedural 

goals as a result of observed events, CANPlan illustrates how events can trigger declarative goals and invoke 

deliberative planning (Sardina and Padgham 2010). Extending these semantics, the agent language CAN specifies 

goal states (pending, waiting, active, and suspended) for three different types of goals (achievement, task, and 

maintenance) and transitions between them (Harland et al. 2010). While providing formal semantics for goal 

reasoning, these approaches require all the goals to be enumerated prior to execution, which is not possible in open 

environments, and have not been empirically evaluated. SOAR agents employ subgoaling and chunking to acquire 

new skills for goals that are not directly attainable. Recently, the selection of operators that change the goals has 

been modified with an intrinsically motivated reinforcement learning mechanism guided by the agent’s appraisals 

                                                 
4
 http://home.earthlink.net/~dwaha/research/meetings/aaai10-gda/ 
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(Marinier et al. 2010). Within the ICARUS architecture, Choi (2010) developed top-level constraint goal 

descriptions that create goals within the recognize-act cycle. In contrast to these approaches, GDA separates 

environmental and goal reasoning from action selection, which permits additional reflection when required. 

Furthermore, the goals we consider may differ substantially from the agent’s current goals and, consequently, should 

not be considered subgoals (e.g., rescuing shipwreck survivors during a transportation mission). 

Mobile robotics researchers frequently address issues pertaining to complex environments and goal reasoning. To 

enable autonomous goal formulation and management, goal generators produce goals when new objects are 

detected, which satisfy a set of conditions (Hanheide et al. 2010). For each new region detected by their mobile 

robot, a goal will be generated to identify the region and incorporated into its continuous planner (Hawes et al. 

2009). Reasoning with open world quantified goals, Scheutz and Schermerhorn (2009) define affective goal 

management as a heuristic to select goals using expected utility, instead of probabilities, based on previous 

experiences. Open world quantified goals and goal generators formulate goals for newly detected objects in the 

environment, they do not generate goals for existing objects whose values have changed. For example, a detected 

submarine may not require a change in goal, but if it changed its course to an intercept a friendly vessel, this may 

require a reconsideration of the active goals that the above goal formulation methods do not consider. While 

ARTUE does not yet include a learning mechanism, it is an important direction for future work. In particular, we 

began investigating the use of active learning (Settles 2009) techniques to acquire ARTUE’s principles (Powell et 

al. 2011). 

In addition to agent architectures and robotics applications, some researchers in computer game AI have employed 

case-based reasoning (CBR; Aamodt and Plaza 1994) to perform goal reasoning. This reduces the knowledge 

engineering tasks for system designers to either annotating expert gameplay traces or simply collecting them.  For 

example, CB-gda uses observed discrepancies as the retrieval cue to select task goals in a team shooter game 

(Muñoz-Avila et al. 2010).EISBots performed competently against the built-in AI of Starcraft by selecting goal 

states using the current state as the retrieval cue from a library of game play traces (Weber et al. 2010). Finally, 

given annotated gameplay traces, Darmok (Ontañón et al. 2010) adapts retrieved plans using the current game state 

and active goal to control agents in a real time strategy game. While useful for strategic decisions, such as, what to 

build next, these approaches would have difficulty on the scenarios described in our evaluation for the following 

reasons: First, they do not reason about hidden state explicitly. Instead they rely on the assumption that similar 

observed states have similar hidden states. While this is likely true in their domains, it is unlikely to hold for training 

simulations, because they seek to broaden the trainee’s reasoning about the domain. Secondly, their state 

representations are simplified in that they do not, for example, include any spatial knowledge in their goal reasoning 

or plans. Therefore, spatially distinct situations would not result in different goals, and plans involving spatial 

elements cannot be constructed, e.g., the plan for defending a specific bottleneck in the BoS Escort scenario. 

7.  Conclusions and Future Work 

Strategy simulations provide complex environments for agents that are continuous in time and space, partially 

observable, open with respect to the introduction of new objects, and dynamic due to hostile opponents and 

exogenous events. To operate autonomously in these complex environments, intelligent agents must perform 

continuous situation assessment, select appropriate goals, create plans to satisfy these goals, and execute them. We 

defined Goal-Driven Autonomy, a conceptual model of goal reasoning, and then instantiated it in ARTUE, an agent 

that integrates HTN planning, discrepancy detection, explanation generation, goal formulation, and goal 

management. Our system, ARTUE, monitors the environment for discrepancies between its expectations and its 

observations during execution. ARTUE then explains these discrepancies using an environment model, which 

extends its understanding of the state by postulating unobserved objects and facts. For goal formulation and 

management, ARTUE uses principles, which are goal formulation schemas, to introduce and prioritize new goals. 

This allows ARTUE to generate new plans, designed to avoid potential problems and exploit opportunities, whose 

goal may be unrelated to its active goal. The results of our evaluation on scenarios from two strategy simulations, 

Battle of Survival and the TAO Sandbox, provide support for the hypothesis that GDA enables agents to respond 

competently to unexpected events in scenarios from complex environments. 

 

While our results are promising, future work should investigate implications of the GDA conceptual model and 

extend ARTUE’s capabilities. First, by providing a clearer semantics for tasks and goals, we believe that GDA will 

reduce the knowledge engineering required to design an intelligent agent and enable learning of domain knowledge. 
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To investigate this claim, we will explore approaches that learn ARTUE’s domain knowledge for discrepancy 

detection, explanation generation, goal formulation, and goal management. Second, there are a variety of amenable 

AI techniques for each GDA task (Klenk 2010), and ARTUE represents only one possible instantiation. 

Consequently, additional research is required to understand the strengths and weaknesses of different techniques and 

their combinations for goal reasoning. Given the breadth of recent work on goal reasoning (see Section 6.2), we 

expect it will attract more research attention in the future. The fact that ARTUE’s principles, which generate tasks 

for HTN planning, are similar to other approaches, such as, the goal generators (Hanheide et al. 2010), which 

generate state-based goals, suggests that goal reasoning is a distinct process worthy of independent investigation.  

 

Our experience with ARTUE in these domains drives our future work in three directions. First, leveraging the GDA 

framework, we will continue to investigate methods for learning the knowledge necessary for discrepancy detection, 

explanation, and goal reasoning. Our first extension has shown that ARTUE can be trained to learn goal formulation 

and management knowledge in an active learning framework (Powell et al. 2011). . Second, we will integrate a 

spatial reasoning system to replace the current representation, which is tied to specific scenarios. In addition to 

increasing ARTUE’s range of application, abstract spatial relations may also be used to perform cross-domain 

analogical learning (Klenk 2009) reducing the knowledge engineering burden in new environments. Third, 

ARTUE’s explanation generation component only explains one type of discrepancy ‒ those arising from hidden 

facts and unknown objects in the environment. An important next step is to generate explanations that trigger 

learning goals to improve the agent’s domain knowledge, and sensing goals to investigate unexplainable 

discrepancies resulting from inaccurate perception. We will investigate these issues as we extend ARTUE toward 

our vision of a more robust autonomous agent. While we currently use strategy simulations as a testbed for 

autonomous behavior, we believe that goal-reasoning autonomous agents will function as realistic teammates and 

opponents in future strategy simulations. 

Acknowledgements 

Thanks to DARPA for funding this research, and PM Michael Cox for inspiring work on this topic. The views and 

opinions contained in this paper are those of the authors and should not be interpreted as representing the official 

views or policies, either expressed or implied, of NRL, DARPA, or the DoD. Matthew Klenk performed this 

research while supported by an NRC postdoctoral fellowship. 

 References 

Aamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and 

system approaches. AI Communications, 7(1), 39-59. 

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., and Pizzini, Q. (2009). Towards research on goal reasoning 

with the TAO Sandbox (Technical Report AIC-09-155). Washington, DC: Naval Research Laboratory, Navy 

Center for Applied Research on AI. 

Ayan, N.F., Kuter, U., Yaman F., and Goldman R. (2007). Hotride: Hierarchical ordered task replanning in dynamic 

environments. In F. Ingrand, and K. Rajan (Eds.) Planning and Plan Execution for Real-World Systems – 

Principles and Practices for Planning in Execution: Papers from the ICAPS Workshop. Providence, RI.  

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-160. 

Champandard, A. (2007). Behavior trees for next-gen game AI. In Proceedings of the Game Developers 

Conference. Lyon, France. 

Choi, D. (2010). Coordinated execution and goal management in a reactive cognitive architecture. Doctoral 

dissertation: Department of Aeronautics and Astronautics, Stanford University, Stanford, CA. 

Coddington, A., and Luck, M. (2004). A motivation-based planning and execution framework. International Journal 

on Artificial Intelligence Tools, 13(1), 5-25. 

Coles, A., Coles, A., Fox, M., and Long, D. (2009). Temporal planning in domains with linear processes. In 

Proceedings of the International Joint Conference on Artificial Intelligence. Pasadena, CA: AAAI Press. 



15 

 

Corchado, J.M., Gonzalez-Bedia, M., De Paz, Y., Bajo, J., and De Paz, J.F. (2008). Replanning mechanism for 

deliberative agents in dynamic changing environments. Computational Intelligence, 24(2), 77–107. 

Cox, M.T. (2007). Perpetual self-aware cognitive agents. AI Magazine, 28(1), 32-45. 

Cox, M.T., and Veloso, M.M. (1998). Goal transformations in continuous planning. In M. desJardins (Ed.), 

Proceedings of the Fall Symposium on Distributed Continual Planning (pp. 23-30). Menlo Park, CA: AAAI 

Press. 

de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28(2), 127-162. 

Dearden R., Meuleau N., Ramakrishnan S., Smith, D., and Washington R. (2003). Incremental contingency 

planning. In M. Pistore, H. Geffner, and D. Smith (Eds.) Planning under Uncertainty and Incomplete 

Information: Papers from the ICAPS Workshop. Trento, Italy. 

Erol, K., Nau, D., and Hendler, J. (1994). HTN planning: Complexity and expressivity.  Proceedings of the Twelfth 

National Conference on Artificial Intelligence (pp. 123-1128). Seattle, WA: AAAI Press. 

Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving to problem 

solving, Artificial Intelligence, 2, 189–208. 

Fox, M. and Long, D. (2006). Modelling mixed discrete-continuous domains for planning. Journal of Artificial 

Intelligence Research, 27, 235-297. 

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated planning: Theory and practice. San Mateo, CA: Morgan 

Kaufmann. 

Gill, A. (1962). Introduction to the theory of finite-state machines. , New York: McGraw-Hill. 

Goldman, R.P. (2009). Partial observability, quantification, and iteration for planning: Work in progress. In 

Generalized Planning: Macros, Loops, Domain Control: Papers from the ICAPS Workshop. Thessaloniki, 

Greece: [http://www.cs.umass.edu/~siddhart/genplan09]. 

Hanheide, M., Hawes, N., Wyatt, J., Göbelbecker, M., Brenner, M., Sjöö, K., Aydemir, A., Jensfelt, P., Zender, H., 

and Kruijff, G-J. (2010). A framework for goal generation and management. In D.W. Aha, M. Klenk, H. Muñoz-

Avila, A. Ram, and D. Shapiro (Eds.) Goal-Directed Autonomy: Notes from the AAAI Workshop (W4). Atlanta, 

GA: AAAI Press.  

Harland, J., Thangarajah, J., Morley, D., and Yorke-Smith, N. (2010). Operational behaviour for executing, 

suspending, and aborting goals in BDI agent systems. In A. Omicini, S. Sardina, and W. Vasconcelos (Eds.) 

Declarative Agent Languages and Technologies: Papers from the AAMAS Workshop. Toronto, CA. 

Hawes, N. (2011). A survey of motivation frameworks for intelligent systems. Artificial Intelligence, 175(5-6), 

1020-1036.  

Hawes, N., Zender, H., Sjöö, K., Brenner, M., Kruijff, G.J.M., and Jensfelt, P. (2009). Planning and acting with an 

integrated sense of space. Proceedings of the First International Workshop on Hybrid Control of Autonomous 

Systems -- Integrating Learning, Deliberation and Reactive Control (pp. 25-32). 

[http://www.hycas.org/2009/HYCAS2009-Proceedings.pdf] 

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Planning and acting in partially observable stochastic 

domains. Artificial Intelligence, 101(1-2), 99-134. 

Klenk, M. (2009). Transfer as a benchmark for multi-representational architectures. In U. Kurup and B. 

Chandrasekaran (Eds.) Multi-Representational Architectures for Human-Level Intelligence: Papers from the AAI 

Fall Symposium (Technical Report FS-09-05). Washington, DC: AAAI Press. 

Klenk, M. (2010). Goal-driven autonomy in planning and acting. In D.W. Aha, M. Klenk, H. Muñoz-Avila, A. Ram, 

& D. Shapiro (Eds.) Goal-Directed Autonomy: Notes from the AAAI Workshop (W4). Atlanta, GA: AAAI Press.  

Laird, J.E. (2008). Extending the Soar cognitive architecture. Proceedings of the First Artificial General Intelligence 

Conference (pp. 224-235). Memphis, TN: IOS Press. 

Laird, J.E., Rosenbloom, P., and Newell, A. (1986). Universal subgoaling and chunking. Kluwer Academic 

Publishers, Boston, MA. 



16 

 

Langley, P. and Choi, D. (2006). A unified cognitive architecture for physical agents. In Proceedings of the Twenty-

First AAAI Conference on Artificial Intelligence. Boston, MA: AAAI Press. 

Likhachev, M. and Stentz, T. (2009). Probabilistic planning with clear preferences on missing information. Artificial 

Intelligence, 173, 696-721. 

Marinier, B., van Lent, M., and Jones, R. (2010). Applying appraisal theories to goal directed autonomy. In D.W. 

Aha, M. Klenk, H. Muñoz-Avila, A. Ram, and D. Shapiro (Eds.) Goal-Directed Autonomy: Notes from the AAAI 

Workshop (W4). Atlanta, GA: AAAI Press.  

Meneguzzi, F.R., and Luck, M. (2007). Motivations as an abstraction of meta-level reasoning. Proceedings of the 

Fifth International Central and Eastern European Conference on Multi-Agent Systems (pp. 204-214). Leipzig, 

Germany: Springer. 

Molineaux, M., Klenk, M., and Aha, D. (2010a). Goal-driven autonomy in a Navy training simulation. In 

Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence. Atlanta, GA: AAAI Press. 

Molineaux, M., Klenk, M., and Aha, D. (2010b). Planning in dynamic environments: Extending HTNs with 

nonlinear continuous effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence. 

Atlanta, GA: AAAI Press. 

Muñoz-Avila, H., Aha, D.W., Jaidee, U., and Carter, E. (2010). Goal-driven autonomy with case-based reasoning. 

Proceedings of the Eighteenth International Conference on Case Based Reasoning (pp. 228-241). Alessandria, 

Italy: Springer. 

Myers, K.L. (1999). CPEF: A continuous planning and execution framework. AI Magazine, 20(4), 63-69. 

Nau, D.S. (2007). Current trends in automated planning. AI Magazine, 28(4), 43–58. 

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F. (2003). SHOP2: An HTN 

planning system. Journal of Artificial Intelligence Research, 20, 379–404. 

Newell, A., and Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall. 

Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. (2010). On-line case-based planning. Computational 

Intelligence,  26(1), 84-119. 

Ponsen, M.J.V., Lee-Urban, S., Muñoz-Avila, H., Aha, D.W., and Molineaux, M. (2005). Stratagus: An open-source 

game engine for research in real-time strategy games. In D.W. Aha, H. Muñoz-Avila, & M. van Lent (Eds.) 

Reasoning Representation, and Learning in Computer Games: Papers from the IJCAI Workshop (Technical 

Report AIC-05-127). Washington, DC: Naval Research Laboratory, Navy Center for Applied Research in 

Artificial Intelligence.  

Powell, J., Molineaux, M., & Aha, D.W. (2011). Active and interactive learning of goal selection knowledge. In 

Proceedings of the Twenty-Fourth Florida Artificial Intelligence Research Society Conference. West Palm Beach, 

FL: AAAI Press 

Ram, A., and Leake, D. (1995). Goal-driven learning. Cambridge, MA: MIT Press. 

Rao, A., and Georgeff, M. (1995). BDI agents: From theory to practice. Proceedings of the First International 

Conference on Multi-agent Systems (pp. 312-319). San Francisco, CA: AAAI Press. 

Roos, N., and Witteveen, C. (2009). Models and methods for plan diagnosis. Autonomous Agents and Multi-Agent 

Systems, 19, 30-52. 

Sardina, S., and Padgham, L. (2010) A BDI agent programming language with failure handling, declarative goals, 

and planning. Autonomous Agents and Multi-Agent Systems. Online First: Springer. 

[http://www.springerlink.com/content/x87k477806p2k15m/fulltext.pdf] 

Scheutz, M., and Schermerhorn, P. (2009). Affective goal and task selection for social robots. In J. Vallverdú and D. 

Casacuberta (Eds.) The Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications 

in Affective Computing and Artificial Intelligence. IGI Global: Hershey, PA. 

Settles, B. (2009). Active learning literature survey (Technical Report 1648). Madison, WI: University of 

Wisconsin-Madison, Department of Computer Sciences. 



17 

 

Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press. 

Talamadupula, K., Benton, J., Schermerhorn, P., Kambhampati, S., and Scheutz, M. (2009). Integrating a closed 

world planner with an open world robot: A case study. In M. Likachev, B. Marthi, C. McGann, and D.E. Smith 

(Eds.) Bridging the Gap between Task and Motion Planning: Papers from the ICAPS Workshop. Thessaloniki, 

Greece. 

Weber, B., Mateas, M., and Jhala, A. (2010). Applying goal-driven autonomy to StarCraft. In Proceedings of 

Artificial Intelligence and Interactive Digital Entertainment. Palo Alto, CA: AAAI Press. 


